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We investigate a nonlinear wave phenomenon described by the perturbation𝐾(𝑛,𝑚)Rosenau-Hyman equation within the concept
of derivative with fractional order. We used the Caputo fractional derivative and we proposed an iteration method in order to find
a particular solution of the extended perturbation equation. We proved the stability and the convergence of the suggested method
for solving the extended equation without any restriction on (𝑚, 𝑛) and also on the perturbations terms. Using the inner product
we proved the uniqueness of the special solution. By choosing randomly the fractional orders and 𝑚, we presented the numerical
solutions.

1. Introduction

Fractional calculus is referring to calculus of integrals and
derivatives with any real or complex order and has increased
significantly attractiveness throughout the past three decades,
owing for the most part to its established relevance in
many fields of science and engineering. It does without a
doubt make quite a lot of potentially advantageously helpful
equipment available for finding the solutions of differential
and integral equations and further problems connecting
exceptional functions of mathematics physics in addition to
their additional rooms and generalizations in one and more
variables. No wonder researchers nowadays are interested
in modelling several physical problems within the scope of
the fractional calculus. This leads us to have a look at the
nonlinear scattering waves.

Generalized Korteweg-de Vries equations with nonlin-
ear dispersion can propagate compactly supported solitary

waves, referred to as compactons [1–7]. Numerical sim-
ulations give you an idea about an original pulse wider
than a compacton with small amount of radiation; in addi-
tion compactons collide elastically suffering only a phase
shift after the collision and generating a small amplitude,
zero-mass, compact (see [8–13]). Primarily discovered in
the 𝐾(𝑛,𝑚) Rosenau-Hyman equation for the modeling
of pattern developments in liquid drops, compactons have
more than a few functions in physics and science [1], for
instance, pattern configuration on liquid plane [14]. The
𝐾(𝑛,𝑚) equation is in addition the permanent boundary
of the disconnected equations of a nonlinear lattice [1–15]
and has been generalized to advanced dimensions [16]. Let
us also note that the 𝐾(𝑛,𝑚) equation has other kinds of
solutions, for instance, the elliptic compactons [1, 17, 18]. At
long last, several generalizations of the 𝐾(𝑛,𝑚) equations
have also been well thought-out in the literature, such as the
insertion of time-dependent damping and dispersion [19] or
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the addition of fifth-order dispersion [20]. In this workwe are
very much interested in investigating the special solution of
the perturbation 𝐾(𝑛,𝑚) Rosenau-Hyman equation, which
we will generalize as follows:

𝜕
𝛼

𝑡
𝑢 + 𝜕
𝑥
𝑢
𝑚

+ 𝜕
3

𝑥𝑥𝑥
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𝑢 − 𝜇
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6
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− 𝜇
2
𝜕
6

𝑥𝑥𝑥𝑥𝑡𝑡
𝑢 − 𝜇
3
𝜕
6

𝑥𝑥𝑥𝑡𝑡𝑡
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− 𝜇
4
𝜕
6

𝑥𝑥𝑡𝑡𝑡𝑡
𝑢 − 𝜇
5
𝜕
6

𝑥𝑡𝑡𝑡𝑡𝑡
𝑢

− 𝜇
6
𝜕
6

𝑡𝑡𝑡𝑡𝑡𝑡
𝑢,

(1)

where |𝜇
𝑗
| ≪ 1 are small parameters. The above equation

will be called the perturbation fractional 𝐾(𝑛,𝑚) Rosenau-
Hyman equation. Because of the plentiful profits offered
by these fractional derivatives, many researchers have been
stressing on proposing new definitions of fractional deriva-
tives. We shall present the brief summary of these derivatives
in the following section.

2. Some Fractional Calculus Definitions

It is perhaps important to mention that the concept of
noninteger order derivative is an older concept, since it is
considered to have stanched after an interrogation rose in the
year 1695 by Marquis de L’Hopital. We shall present some of
these definitions here.

Definition 1 (see [21–26]). The Riemann-Liouville fractional
derivative is as follows: according to Riemann-Liouville the
fractional derivative of a function says 𝑓 is given as
𝐷
𝛼

𝑡
(𝑓 (𝑡))

=
1

Γ (𝑛 − 𝛼)
(
𝑑

𝑑𝑡
)

𝑛

∫

𝑡

𝑎

(𝑡 − 𝑥)
𝑛−𝛼−1

𝑓 (𝑥) 𝑑𝑥,

𝑛 − 1 < 𝛼 ≤ 𝑛.

(2)

Definition 2. The Riemann-Liouville fractional integral is
as follows: according to Riemann-Liouville, the fractional
integral that is considered as antifractional derivative of a
function 𝑓 is given as

𝐼
𝛼

𝑡
(𝑓 (𝑡)) =

1

Γ (𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑥)
𝛼−1

𝑓 (𝑥) 𝑑𝑥, 𝑥 > 𝑎. (3)

Definition 3. Caputo fractional derivative is as follows:
according to Caputo, the fractional derivative of a continuous
and 𝑛-time differentiable function 𝑓 is given as
𝐷
𝛼

𝑡
(𝑓 (𝑡))

=
1

Γ (𝑛 − 𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑥)
𝑛−𝛼−1

(
𝑑

𝑑𝑥
)

𝑛

𝑓 (𝑥) 𝑑𝑥,

𝑛 − 1 < 𝛼 ≤ 𝑛.

(4)

Definition 4. The modified Riemann-Liouville fractional
derivative of a function 𝑓 is given as
𝐷
𝛼

𝑡
(𝑓 (𝑡))

=
1

Γ (𝑛 − 𝛼)
(
𝑑

𝑑𝑡
)

𝑛

∫

𝑡

𝑎

(𝑡 − 𝑥)
𝑛−𝛼−1

[𝑓 (𝑥) − 𝑓 (𝑎)] 𝑑𝑥,

𝑛 − 1 < 𝛼 ≤ 𝑛.

(5)

There are other definitions that are not mentioned here. We
shall present the derivation of the special solution in the next
section. However, in this paper we shall use the Caputo type.

3. Derivation of the Special Solution

One of the great challenges in the field of partial of differential
equation is to derive the solution of especially nonlinear
equations, not to mention nonlinear equations described
with the fractional order derivative, for example, the pertur-
bation fractional𝐾(𝑛,𝑚) Rosenau-Hyman equation that has
stronger nonlinearity. No wonder scholars of this area are
always trying to find suitable and easier methods to derive
at least approximate solution of these difficult equations. In
this paper we will make use of a simple iteration method
to propose a special solution to the perturbation fractional
𝐾(𝑛,𝑚) Rosenau-Hyman equation; the methods is called
the new variational iteration method (NVIM) [27], which
uses the idea of Lagrange multiplier. We shall first show
the methodology to accommodate readers that are not used
to this method. Now consider a general partial differential
equation with high order (𝑚) with respect to time; then, in
this new VIM, the first step is to apply the Laplace transform
on both sides of equation to obtain

𝑠
𝑚

𝑤 (𝑥, 𝑠) − 𝑠
𝑚−1

𝑤 (𝑥, 0) − ⋅ ⋅ ⋅ 𝑤
𝑚−1

(𝑥, 0)

= L [𝐿 (𝑤 (𝑥, 𝑡)) + 𝑁 (𝑤 (𝑥, 𝑡)) + 𝑘 (𝑥, 𝑡)] .
(6)

The recursive formula of (6) can now be used to put
forward the main recursive method connecting the Lagrange
multiplier as

𝑤
𝑛+1

(𝑥, 𝑠) = 𝑤
𝑛
(𝑥, 𝑠) + 𝜆 (𝑠) [𝑠

𝑚

𝑤
𝑛
(𝑥, 𝑠)

− 𝑠
𝑚−1

𝑤 (𝑥, 0) − ⋅ ⋅ ⋅ 𝑤
𝑚−1

(𝑥, 0)

−L [𝐿 (𝑤
𝑛
(𝑥, 𝑡)) + 𝑁 (𝑤

𝑛
(𝑥, 𝑡)) + 𝑘 (𝑥, 𝑡)]] .

(7)

Now consideringL[𝐿(𝑤
𝑛
(𝑥, 𝑡))+𝑁(𝑤

𝑛
(𝑥, 𝑡))+𝑘(𝑥, 𝑡)] as the

restricted term, the Lagrange multiplier can be obtained as
[27]

𝜆 (𝑠) = −
1

𝑠𝑚
. (8)

Now applying the inverse Laplace transform on both sides of
(6), we obtain the following iteration:

𝑤
𝑛+1

(𝑥, 𝑡) = 𝑤
𝑛
(𝑥, 𝑡) −L

−1

[
1

𝑠𝑚
[−L [𝐿 (𝑤

𝑛
(𝑥, 𝑡))

+ 𝑁 (𝑤
𝑛
(𝑥, 𝑡)) + 𝑘 (𝑥, 𝑡)]]]

(9)

with the first term to be

𝑤
0
(𝑥, 𝑡) = −L

−1

[
1

𝑠𝑚
(𝑠
𝑚

𝑤
𝑛
(𝑥, 𝑠) − 𝑠

𝑚−1

𝑤 (𝑥, 0)

− ⋅ ⋅ ⋅ 𝑤
𝑚−1

(𝑥, 0))] .

(10)

Now following the above methodology, we can obtain the
Lagrange multiplier of (1) to be

𝜆 (𝑠) = −
1

𝑠𝛼
(11)
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and the iteration formula associate is given by

𝑢
𝑘+1

= L
−1

(−
1

𝑠𝛼
L(
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Γ (𝛼)
∫

𝑡

0
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2
𝜕
6

𝑥𝑥𝑥𝑥𝑙𝑙
𝑢
𝑘
− 𝜇
3
𝜕
6

𝑥𝑥𝑥𝑙𝑙𝑙
𝑢
𝑘
− 𝜇
4
𝜕
6

𝑥𝑥𝑙𝑙𝑙𝑙
𝑢
𝑘
− 𝜇
5
𝜕
6

𝑥𝑙𝑙𝑙𝑙𝑙
𝑢
𝑘
− 𝜇
6
𝜕
6

𝑙𝑙𝑙𝑙𝑙𝑙
𝑢
𝑘
) 𝑑𝑙))

(12)

and then
𝑢 (𝑥, 𝑡) = lim

𝑘→∞

𝑢
𝑘+1

. (13)

Theorem 5 (convergence analysis). Let us consider
𝑇 (𝑢) = 𝜕

𝛼

𝑡
𝑢

= −𝜕
𝑥
𝑢
𝑚

− 𝜕
3

𝑥𝑥𝑥
𝑢
𝑛

− 𝜇
0
𝜕
6

𝑥𝑥𝑥𝑥𝑥𝑥
𝑢 − 𝜇
1
𝜕
6

𝑥𝑥𝑥𝑥𝑥𝑡
𝑢

− 𝜇
2
𝜕
6

𝑥𝑥𝑥𝑥𝑡𝑡
𝑢 − 𝜇
3
𝜕
6

𝑥𝑥𝑥𝑡𝑡𝑡
𝑢 − 𝜇
4
𝜕
6

𝑥𝑥𝑡𝑡𝑡𝑡
𝑢

− 𝜇
5
𝜕
6

𝑥𝑡𝑡𝑡𝑡𝑡
𝑢 − 𝜇
6
𝜕
6

𝑡𝑡𝑡𝑡𝑡𝑡
𝑢

(14)

and consider the initial and boundary condition for (1); then
the new variation iteration method leads to a special solution
of (1).

Proof. To achieve this we shall think about the following
fractional sub-Hilbert space 𝐻

𝛼
of the Hilbert space 𝐻 =

𝐿
2

((𝑎, 𝑏) × (0, 𝑇)) [28] that can be defined as the set of those
functions:

V: (𝑎, 𝑏) × [0, 𝑇] → R,

1

Γ (𝛼)
∬ (𝑡 − 𝑙)

𝛼−1 V𝑚𝑑𝑙 𝑑𝑠 < ∞.
(15)

We harmoniously assume that the differential operators are
restricted under the 𝐿2 norms. Using the definition of the
operator, 𝑇, we have the following:

𝑇 (𝑢) − 𝑇 (V) = −𝜕
𝑥
(𝑢
𝑚

− V𝑚) − 𝜕3
𝑥𝑥𝑥

(𝑢
𝑛

− V𝑛)

− 𝜇
0
𝜕
6

𝑥𝑥𝑥𝑥𝑥𝑥
(𝑢 − V)

− 𝜇
1
𝜕
6

𝑥𝑥𝑥𝑥𝑥𝑡
(𝑢 − V)

− 𝜇
2
𝜕
6

𝑥𝑥𝑥𝑥𝑡𝑡
(𝑢 − V) − 𝜇

3
𝜕
6

𝑥𝑥𝑥𝑡𝑡𝑡
(𝑢) − V

− 𝜇
4
𝜕
6

𝑥𝑥𝑡𝑡𝑡𝑡
(𝑢 − V) − 𝜇

5
𝜕
6

𝑥𝑡𝑡𝑡𝑡𝑡
(𝑢 − V)

− 𝜇
6
𝜕
6

𝑡𝑡𝑡𝑡𝑡𝑡
(𝑢 − V) .

(16)

Our next task is to evaluate (𝑇(𝑢)−𝑇(V), 𝑢− V)with (, ) being
the inner product. Then, we have the following:

(𝑇 (𝑢) − 𝑇 (V) , 𝑢 − V) = − (𝜕
𝑥
(𝑢
𝑚

− V𝑚) , 𝑢 − V)

− (𝜕
3

𝑥𝑥𝑥
(𝑢
𝑛

− V𝑛) , 𝑢 − V)

− 𝜇
0
(𝜕
6

𝑥𝑥𝑥𝑥𝑥𝑥
(𝑢 − V) , 𝑢 − V)

− 𝜇
1
(𝜕
6

𝑥𝑥𝑥𝑥𝑥𝑡
(𝑢 − V) , 𝑢 − V)

− 𝜇
2
(𝜕
6

𝑥𝑥𝑥𝑥𝑡𝑡
(𝑢 − V) , 𝑢 − V)

− 𝜇
3
(𝜕
6

𝑥𝑥𝑥𝑡𝑡𝑡
(𝑢 − V) , 𝑢 − V)

− 𝜇
4
(𝜕
6

𝑥𝑥𝑡𝑡𝑡𝑡
(𝑢 − V) , 𝑢 − V)

− 𝜇
5
(𝜕
6

𝑥𝑡𝑡𝑡𝑡𝑡
(𝑢 − V) , 𝑢 − V)

− 𝜇
6
(𝜕
6

𝑡𝑡𝑡𝑡𝑡𝑡
(𝑢 − V) , 𝑢 − V) .

(17)

To evaluate the above expression, we shall consider case by
case: we shall start with the following:

(𝜕
𝑥
(𝑢
𝑚

− V𝑚) , 𝑢 − V) . (18)

With the benefit of the Cauchy-Schwartz inequality, we have
the following relation

(𝜕
𝑥
(𝑢
𝑚

− V𝑚) , 𝑢 − V) ≤ 𝜕𝑥 (𝑢
𝑚

− V𝑚) ‖𝑢 − V‖ . (19)

The most important part in the above inequality is ‖𝜕
𝑥
(𝑢
𝑚

−

V𝑚)‖; let us handle this part; first making use of the continuity
properties of the derivative, it is possible for us to find a
positive constant 𝜃

1
such that

𝜕𝑥 (𝑢
𝑚

− V𝑚) ≤ 𝜃
1

𝑢
𝑚

− V𝑚 ,

𝑢
𝑚

− V𝑚 = (𝑢 − V)(
𝑚−2

∑

𝑗=0

∁
𝑗

𝑚−1
𝑢
𝑗V𝑚−𝑗−2) .

(20)

Therefore

𝜕𝑥 (𝑢
𝑚

− V𝑚) ≤ 𝜃
1
‖𝑢 − V‖



𝑚−2

∑

𝑗=0

∁
𝑗

𝑚−1
𝑢
𝑗V𝑚−𝑗−2



. (21)

Now if one makes use of the triangular inequality, we
transform the above to

𝜕𝑥 (𝑢
𝑚

− V𝑚) ≤ 𝜃
1
‖𝑢 − V‖

𝑚−2

∑

𝑗=0

∁
𝑗

𝑚−1


𝑢
𝑗V
𝑚−𝑗−2

. (22)

However to proceed with our demonstration, we must
assume that 𝑢, V are bounded, implying that we can find a
positive constant, say𝑀, such that ‖𝑢‖, ‖V‖ ≤ 𝑀. Therefore,

𝑚−2

∑

𝑗=0

∁
𝑗

𝑚−1


𝑢
𝑗V
𝑚−𝑗−2

≤

𝑚−2

∑

𝑗=0

∁
𝑗

𝑚−2
𝑀
𝑗

𝑀
𝑚−𝑗−2

= (2𝑀)
𝑚−2

.

(23)

Thus, we have the following:

𝜕𝑥 (𝑢
𝑚

− V𝑚) ≤ (2𝑀)
𝑚−2

𝜃
1
‖𝑢 − V‖2 . (24)
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We shall now consider the following:

(𝜕
3

𝑥𝑥𝑥
(𝑢
𝑛

− V𝑛) , 𝑢 − V) . (25)

Again, using the Cauchy-Schwartz inequality, we have the
following relationship:

(𝜕
3

𝑥𝑥𝑥
(𝑢
𝑛

− V𝑛) , 𝑢 − V) ≤

𝜕
3

𝑥𝑥𝑥
(𝑢
𝑛

− V𝑛)

‖𝑢 − V‖ . (26)

Using the properties of the inner product the above can
further be converted to

(𝜕
3

𝑥𝑥𝑥
(𝑢
𝑛

− V𝑛) , 𝑢 − V) ≤ 𝜃
2


𝜕
3

𝑥𝑥𝑥
(𝑢
𝑛

− V𝑛)

‖𝑢 − V‖

≤ 𝜃
2
𝜃
3


𝜕
2

𝑥𝑥
(𝑢
𝑛

− V𝑛)

‖𝑢 − V‖

≤ 𝜃
2
𝜃
3
𝜃
4


𝜕
1

𝑥
(𝑢
𝑛

− V𝑛)

‖𝑢 − V‖

≤ 𝜃
2
𝜃
3
𝜃
4
𝜃
5

(𝑢
𝑛

− V𝑛) ‖𝑢 − V‖ .

(27)

However,

(𝑢
𝑛

− V𝑛) = ‖𝑢 − V‖


𝑚−2

∑

𝑗=0

∁
𝑗

𝑛−2
𝑢
𝑗V𝑛−𝑗−2



≤ ‖𝑢 − V‖
𝑚−2

∑

𝑗=0

∁
𝑗

𝑛−2


𝑢
𝑗

‖V‖𝑛−𝑗−2 ;

(28)

using the same argument as before, we obtain

(𝜕
3

𝑥𝑥𝑥
(𝑢
𝑛

− V𝑛) , 𝑢 − V)

≤ 𝜃
2
𝜃
3
𝜃
4
𝜃
5
(2𝑀)
𝑚−2

‖𝑢 − V‖2 .
(29)

Also

𝜇
0
(𝜕
6

𝑥𝑥𝑥𝑥𝑥𝑥
(𝑢 − V) , 𝑢 − V)

≤ 𝜇
0
𝜃
6
𝜃
7
𝜃
8
𝜃
9
𝜃
10
𝜃
11
‖𝑢 − V‖2 ,

𝜇
1
(𝜕
6

𝑥𝑥𝑥𝑥𝑥𝑡
(𝑢 − V) , 𝑢 − V)

≤ 𝜇
1
𝜃
12
𝜃
13
𝜃
14
𝜃
15
𝜃
16
𝜃
17
‖𝑢 − V‖2 ,

𝜇
2
(𝜕
6

𝑥𝑥𝑥𝑥𝑡𝑡
(𝑢 − V) , 𝑢 − V)

≤ 𝜇
2
𝜃
18
𝜃
19
𝜃
20
𝜃
21
𝜃
22
𝜃
23
‖𝑢 − V‖2 ,

𝜇
3
(𝜕
6

𝑥𝑥𝑥𝑡𝑡𝑡
(𝑢 − V) , 𝑢 − V)

≤ 𝜇
3
𝜃
24
𝜃
25
𝜃
26
𝜃
27
𝜃
28
𝜃
29
‖𝑢 − V‖2 ,

𝜇
4
(𝜕
6

𝑥𝑥𝑡𝑡𝑡𝑡
(𝑢 − V) , 𝑢 − V)

≤ 𝜇
4
𝜃
30
𝜃
31
𝜃
32
𝜃
33
𝜃
34
𝜃
35
‖𝑢 − V‖2 ,

𝜇
5
(𝜕
6

𝑥𝑡𝑡𝑡𝑡𝑡
(𝑢 − V) , 𝑢 − V)

≤ 𝜇
5
𝜃
36
𝜃
37
𝜃
38
𝜃
39
𝜃
40
𝜃
41
‖𝑢 − V‖2 ,

𝜇
6
(𝜕
6

𝑡𝑡𝑡𝑡𝑡𝑡
(𝑢 − V) , 𝑢 − V)

≤ 𝜇
6
𝜃
42
𝜃
43
𝜃
44
𝜃
45
𝜃
46
𝜃
47
‖𝑢 − V‖2 .

(30)

Now replacing these relations into (17), we obtain the follow-
ing relation:

(𝑇 (𝑢) − 𝑇 (V) , 𝑢 − V) ≥ (− (2𝑀)
𝑚−2

𝜃
1

− 𝜃
2
𝜃
3
𝜃
4
𝜃
5
(2𝑀)
𝑚−2

+ 𝜇
0
𝜃
6
𝜃
7
𝜃
8
𝜃
9
𝜃
10
𝜃
11

− 𝜇
1
𝜃
12
𝜃
13
𝜃
14
𝜃
15
𝜃
16
𝜃
17
+ 𝜇
2
𝜃
18
𝜃
19
𝜃
20
𝜃
21
𝜃
22
𝜃
23

− 𝜇
3
𝜃
24
𝜃
25
𝜃
26
𝜃
27
𝜃
28
𝜃
29
+ 𝜇
4
𝜃
30
𝜃
31
𝜃
32
𝜃
33
𝜃
34
𝜃
35

− 𝜇
5
𝜃
36
𝜃
37
𝜃
38
𝜃
39
𝜃
40
𝜃
41
+ 𝜇
6
𝜃
42
𝜃
43
𝜃
44
𝜃
45
𝜃
46
𝜃
47
) ‖𝑢

− V‖2 .

(31)

Take

𝛽 = (− (2𝑀)
𝑚−2

𝜃
1
− 𝜃
2
𝜃
3
𝜃
4
𝜃
5
(2𝑀)
𝑚−2

+ 𝜇
0
𝜃
6
𝜃
7
𝜃
8
𝜃
9
𝜃
10
𝜃
11
− 𝜇
1
𝜃
12
𝜃
13
𝜃
14
𝜃
15
𝜃
16
𝜃
17

+ 𝜇
2
𝜃
18
𝜃
19
𝜃
20
𝜃
21
𝜃
22
𝜃
23
− 𝜇
3
𝜃
24
𝜃
25
𝜃
26
𝜃
27
𝜃
28
𝜃
29

+ 𝜇
4
𝜃
30
𝜃
31
𝜃
32
𝜃
33
𝜃
34
𝜃
35
− 𝜇
5
𝜃
36
𝜃
37
𝜃
38
𝜃
39
𝜃
40
𝜃
41

+ 𝜇
6
𝜃
42
𝜃
43
𝜃
44
𝜃
45
𝜃
46
𝜃
47
)

(32)

such that

(𝑇 (𝑢) − 𝑇 (V) , 𝑢 − V) ≥ 𝛽 ‖𝑢 − V‖2 . (33)

The next step in this proof will be to evaluate

(𝑇 (𝑢) − 𝑇 (V) , 𝑤) = − (𝜕
𝑥
(𝑢
𝑚

− V𝑚) , 𝑤)

− (𝜕
3

𝑥𝑥𝑥
(𝑢
𝑛

− V𝑛) , 𝑤)

− 𝜇
0
(𝜕
6

𝑥𝑥𝑥𝑥𝑥𝑥
(𝑢 − V) , 𝑢 − V)

− 𝜇
1
(𝜕
6

𝑥𝑥𝑥𝑥𝑥𝑡
(𝑢 − V) , 𝑤)

− 𝜇
2
(𝜕
6

𝑥𝑥𝑥𝑥𝑡𝑡
(𝑢 − V) , 𝑤)

− 𝜇
3
(𝜕
6

𝑥𝑥𝑥𝑡𝑡𝑡
(𝑢 − V) , 𝑤)

− 𝜇
4
(𝜕
6

𝑥𝑥𝑡𝑡𝑡𝑡
(𝑢 − V) , 𝑤)

− 𝜇
5
(𝜕
6

𝑥𝑡𝑡𝑡𝑡𝑡
(𝑢 − V) , 𝑤)

− 𝜇
6
(𝜕
6

𝑡𝑡𝑡𝑡𝑡𝑡
(𝑢 − V) , 𝑤) .

(34)

Nevertheless, following the discussion presented, we shall
have

(𝑇 (𝑢) − 𝑇 (V) , 𝑤) ≥ 𝑘 ‖𝑢 − V‖ ‖𝑤‖ , (35)

where 𝑘 is defined as

𝑘 = (− (2𝑀)
𝑚−2

𝜃
1
− 𝜃
2
𝜃
3
𝜃
4
𝜃
5
(2𝑀)
𝑚−2

+ 𝜇
0
𝜃
6
𝜃
7
𝜃
8
𝜃
9
𝜃
10
𝜃
11
− 𝜇
1
𝜃
12
𝜃
13
𝜃
14
𝜃
15
𝜃
16
𝜃
17

+ 𝜇
2
𝜃
18
𝜃
19
𝜃
20
𝜃
21
𝜃
22
𝜃
23
− 𝜇
3
𝜃
24
𝜃
25
𝜃
26
𝜃
27
𝜃
28
𝜃
29

− 𝜇
4
𝜃
30
𝜃
31
𝜃
32
𝜃
33
𝜃
34
𝜃
35
− 𝜇
5
𝜃
36
𝜃
37
𝜃
38
𝜃
39
𝜃
40
𝜃
41

− 𝜇
6
𝜃
42
𝜃
43
𝜃
44
𝜃
45
𝜃
46
𝜃
47
) .

(36)

This completes the proof.
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Our next concern will consist of investigating on the
uniqueness of the special solution.We shall assume that there
exist two special solutions, say 𝑢

1
and 𝑢

2
, satisfying (2); then,

using (33), we have

(𝑇 (𝑢
1
) − 𝑇 (𝑢

2
) , 𝑢
1
− 𝑢
2
) ≥ 𝛽

𝑢1 − 𝑢2


2

. (37)

Since both solutions satisfy (2), thus 𝑇(𝑢
1
) − 𝑇(𝑢

2
) ≅ 0; then,

(𝑇(𝑢
1
) − 𝑇(𝑢

2
), 𝑢
1
− 𝑢
2
) ≅ 0. Nonetheless,

𝑢1 − 𝑢2


2

=
𝑢1 − 𝑢2



𝑢1 − 𝑢2
 .

(38)

Thus if 𝑢 is the exact solution of (2) we have the following
relation,

𝑢1 − 𝑢 + 𝑢 − 𝑢2
 ≤

𝑢 − 𝑢2
 +

𝑢 − 𝑢2
 <

𝜀

2𝛽
+

𝜀

2𝛽
(39)

with 𝜀 being a very small positive parameter closer to zero.
Then the inequality (37) can be converted to

0 ≥ 𝜀
𝑢1 − 𝑢2

 . (40)

And this implied, with the benefits of the norm, that
𝑢1 − 𝑢2

 = 0 ⇒ 𝑢
1
− 𝑢
2
. (41)

3.1. Application of the Scheme. We shall present the special
solutions for some examples using the scheme presented
earlier.

Example 1. Here we assume that the perturbation fractional
𝐾(𝑚,𝑚)Rosenau-Hyman equation is such that |𝜇

𝑗
| = 0; then

we have the following equation:

𝜕
𝛼

𝑡
𝑢 + 𝜕
𝑥
𝑢
𝑚

+ 𝜕
3

𝑥𝑥𝑥
𝑢
𝑚

= 0. (42)

Using the presented scheme and also using the fractional inte-
gral proposed as antiderivative of the conformable fractional
derivative, we obtain the following iteration formula:

𝑢
𝑘+1

= L
−1

(−
1

𝑠𝛼

⋅L(
1

Γ (𝛼)
∫

𝑡

0

(𝑙)
𝛼−1

(−𝜕
𝑥
𝑢
𝑚

𝑘
− 𝜕
3

𝑥𝑥𝑥
𝑢
𝑚

𝑘
) 𝑑𝑙)) ,

𝑢
0
(𝑥, 𝑡) = (

2𝑚

𝑚 + 1
sin2 (𝑚 − 1

2𝑚
(𝑥)))

1/𝑛−1

.

(43)

Now using the algorithm, we reach the following:

𝑢
1
(𝑥, 𝑡)

= −

𝑡
2𝛼

(−4 + (2 − 3𝑚)𝑚 + 3𝑚
2 cos [(−1 + 𝑚) 𝑥/𝑚]) cot [(−1 + 𝑚) 𝑥/2𝑚] csc [(−1 + 𝑚) 𝑥/2𝑚]2 (21/(−1+𝑚) (𝑚 sin [(−1 + 𝑚) 𝑥/2𝑚] / (1 + 𝑚))1/(−1+𝑚))

𝑚

16𝑚2Γ [1 + 2𝛼]
,

𝑢
2
(𝑥, 𝑡) = (2

−4(2+𝑚)

(−2 + 𝑚) 𝑡
2𝛼+2𝑚𝛼

(24576 − 18432𝑚 + 33024𝑚
2

− 199296𝑚
3

+ 432768𝑚
4

− 540576𝑚
5

+ 500784𝑚
6

− 358992𝑚
7

+ 195624𝑚
8

− 73332𝑚
9

+ 12474𝑚
10

− 8 (−2048 − 8192𝑚 + 32640𝑚
2

− 47072𝑚
3

+ 56392𝑚
4

− 73464𝑚
5

+ 81546𝑚
6

− 65784𝑚
7

+ 38151𝑚
8

− 14877𝑚
9

+ 2673𝑚
10

)

⋅ cos [(−1 + 𝑚) 𝑥
𝑚

] + (8192 − 6144𝑚 − 21504𝑚
2

− 51712𝑚
3

+ 198912𝑚
4

− 276864𝑚
5

+ 263616𝑚
6

− 217152𝑚
7

+ 141984𝑚
8

− 62262𝑚
9

+ 13365𝑚
10

)

⋅ cos [2 (−1 + 𝑚) 𝑥
𝑚

] − 9216𝑚
2 cos [3 (−1 + 𝑚) 𝑥

𝑚
] + 256𝑚

3 cos [3 (−1 + 𝑚) 𝑥
𝑚

] + 36128𝑚
4 cos [3 (−1 + 𝑚) 𝑥

𝑚
] − 30816𝑚

5 cos [3 (−1 + 𝑚) 𝑥
𝑚

]

− 10952𝑚
6 cos [3 (−1 + 𝑚) 𝑥

𝑚
] + 38816𝑚

7 cos [3 (−1 + 𝑚) 𝑥
𝑚

] − 36108𝑚
8 cos [3 (−1 + 𝑚) 𝑥

𝑚
] + 19332𝑚

9 cos [3 (−1 + 𝑚) 𝑥
𝑚

] − 5940𝑚
10

⋅ cos [3 (−1 + 𝑚) 𝑥
𝑚

] + 768𝑚
2 cos [4 (−1 + 𝑚) 𝑥

𝑚
] − 4992𝑚

3 cos [4 (−1 + 𝑚) 𝑥
𝑚

] + 16512𝑚
4 cos [4 (−1 + 𝑚) 𝑥

𝑚
] − 21216𝑚

5 cos [4 (−1 + 𝑚) 𝑥
𝑚

]

+ 12816𝑚
6 cos [4 (−1 + 𝑚) 𝑥

𝑚
] − 4464𝑚

7 cos [4 (−1 + 𝑚) 𝑥
𝑚

] + 3384𝑚
8 cos [4 (−1 + 𝑚) 𝑥

𝑚
] − 2700𝑚

9 cos [4 (−1 + 𝑚) 𝑥
𝑚

] + 1782𝑚
10

⋅ cos [4 (−1 + 𝑚) 𝑥
𝑚

] + 288𝑚
4 cos [5 (−1 + 𝑚) 𝑥

𝑚
] − 864𝑚

5 cos [5 (−1 + 𝑚) 𝑥
𝑚

] + 792𝑚
6 cos [5 (−1 + 𝑚) 𝑥

𝑚
] − 864𝑚

7 cos [5 (−1 + 𝑚) 𝑥
𝑚

] + 324𝑚
8

⋅ cos [5 (−1 + 𝑚) 𝑥
𝑚

] − 108𝑚
9 cos [5 (−1 + 𝑚) 𝑥

𝑚
] − 324𝑚

10 cos [5 (−1 + 𝑚) 𝑥
𝑚

] + 54𝑚
9 cos [6 (−1 + 𝑚) 𝑥

𝑚
] + 27𝑚

10 cos [6 (−1 + 𝑚) 𝑥
𝑚

])

⋅ csc [(−1 + 𝑚) 𝑥
𝑚

]

3

Gamma [1 + 𝛼 + 2𝑚𝛼](−
(−4 + 2𝑚 − 3𝑚

2

+ 3𝑚
2 cos [(−1 + 𝑚) 𝑥/𝑚]) cot [(−1 + 𝑚) 𝑥/2𝑚] csc [(−1 + 𝑚) 𝑥/2𝑚]2 (21/(−1+𝑚) (𝑚 sin [(−1 + 𝑚) 𝑥/2𝑚] / (1 + 𝑚))1/(−1+𝑚))

𝑚

𝑚2Gamma [1 + 2𝛼]
)

𝑚

) .

(44)

Using the iteration formula the remaining terms can be
calculated; however, if we go to infinity, the special solution

for this version can be given as

𝑢
𝑠𝑝𝑒

(𝑥, 𝑡) = (
2𝑚

𝑚 + 1
(sin [𝑚 − 1

2𝑚
𝑥]

∞

∑

𝑘=0

(−1)
𝑘

(((𝑚 − 1) /2𝑚) 𝑡)
2𝛼

Γ (1 + 2𝛼𝑘)
+ cos [𝑚 − 1

2𝑚
𝑥]

∞

∑

𝑘=0

(−1)
𝑘

(((𝑚 − 1) /2𝑚) 𝑡)
2𝛼+1

Γ (2𝛼𝑘 + 1)
)

2

)

1/𝑚−1

, (45)
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Figure 1: The special solution for alpha = 0.5 and𝑚 = 50.
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Figure 2: The special solution for alpha = 0.55 and𝑚 = 50.

which of course satisfies that, for alpha equal to 1, we obtain
the exact solution of the𝐾(𝑚,𝑚) Rosenau-Hyman equation

𝑢 (𝑥, 𝑡) = (
2𝑚

𝑚 + 1
sin2 (𝑚 − 1

2𝑚
(𝑥 + 𝑡)))

1/𝑛−1

. (46)

We shall present the numerical results in Figures 1–4 for dif-
ferent value of alpha and𝑚. We have depicted the numerical
results for different alpha and 𝑚 in Figures 1, 2, 3, and 4; for
example, if𝑚 = 50 and alpha = 0.5, we have Figure 1.

For example if alpha is 0.55 and 𝑚 is 50 we will observe
nonlinear wave as represented in Figure 2.

Figures 1–4 as a result of introduction of fractional order
derivative help us to understand better the role of nonlinear
dispersion in prototype configuration.The solitarywave solu-
tions of these equations have extraordinary assets according
to the variation of the order of fractional derivative together
with 𝑚; in addition the solitary wave collides elastically and
they have compact support.The figures also reveal that, when
two compactons collide, the interface location is indicated by
the beginning of low-amplitude compacton-anticompacton
pairs. These equations seem to have only a finite number of
local conservation laws [1]. Nonetheless, the behaviour and
the stability of these compactons are very similar to those
observed in completely integrable systems [1].
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Figure 3: The special solution for alpha = 0.90 and𝑚 = 20.
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Figure 4: The special solution for alpha = 0.95 and𝑚 = 20.

4. Conclusion

One of the most difficult tasks in the area of applied math-
ematics is perhaps to make use of mathematical equations
in order to explain adequately the physical phenomenon.
Partial differential equations have been intensively used
for this purpose in the past decades. However researchers
have encountered some limitation by modelling physical
phenomenon using the integer derivative order. In the way of
trying to extend these limitations, the concept of noninteger
order derivative has been introduced. In the contemporary
day numerous objective occurrences were clarified with
pronounced accomplishment in the light of the perception
of noninteger order derivatives. Exclusively, the compen-
sations of fractional calculus and fractional order replicas
and their diligences in the field of nonlinear wave motion
have beforehand been intensively reexamined throughout
the last few epochs with exceptional conclusion. We have
therefore investigated within that scope of fractional calculus
the nonlinear wave phenomenon that is usually described
via the Perturbation 𝐾(𝑛,𝑚) Rosenau-Hyman equation. We
derived the special solution of the extended equation using
the so-called Laplace transform and the Lagrange multiplier.
We proved with great success the convergence of this method
for solving the extended equation. On the other hand we
showed the uniqueness of the special solution using some
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properties of the inner product within a well-constructed
Hilbert space. Some numerical results were depicted from
Figures 1–4. The special solution seems to describe the real
world problem better than the standard solution.
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